
1

Object Oriented Finite Element Analysis
for Materials Scientists

Stephen Langer NIST ITL
Andrew Reid Drexel (NIST ITL)*
Seung-Ill Haan UMBC (NIST MSEL)*
Edwin Garcia Penn State (NSF-ITR)*
Edwin Fuller NIST MSEL
W. Craig Carter MIT
Panos Charalambides UMBC
Zi-Kui Liu Penn State

*NIST Center for Theoretical and Computational Materials Science

2

Outline of the Talk
What?
Examples:

Thermal Barrier Coatings
MatCASE

OOF2
Why?
How?

Design Goals
Ingredients

3

What is OOF?

1. Start with a micrograph

2. Assign material properties

3. Perform virtual experiments

4. Visualize
 and quantify

4

Why OOF?
Goals:

Elucidate the role of heterogeneous, stochastic
microstructures on the bulk physical properties
of materials.
Correlate properties to microstructure

to shorten the materials development cycle.
to improve materials and processing.
to enable more reliable design.

Provide an extensible platform for computing
general physics of microstructures.

A “Research Problem Solving Environment” for
materials scientists.

5

Why OOF?
• Commercial finite element packages

work best with large scale systems
with regularly shaped components.

6

Why OOF?
• Commercial finite element packages

work best with large scale systems
with regularly shaped components.

• Materials systems are small scale and
disordered.

7

Why OOF?
• Commercial finite element packages

work best with large scale systems
with regularly shaped components.

• Materials systems are small scale and
disordered.

• OOF is designed to answer the
questions that materials scientists
want to ask.

• OOF is easy to use.

8

9

Mesh operations work to minimize an “energy”
functional E of the mesh.

Fitting a Mesh to Pixel Boundaries

E = (1− α)Eshape + αEhomogeneity

Eshape = 1− 36√
3

A
L2

Ehomog. =
∏N

i=1 [(1− ai)/(1− 1/N)]

Eshape = 0 Eshape→ 1

Ehomog. = 0 Ehomog.→ 1

ai= fractional area of pixel type i
N = total number of pixel types

10

Refining Elements

Monte Carlo Node Motion
and Edge Swapping

Operations to
reduce E

Fitting a Mesh to Pixel Boundaries

Initial Coarse Mesh

Final Mesh

11

Examples:

Thermal Barrier Coatings

MatCASE:
Materials Computation and Simulation Environment

12

Predict Thermal Conductivity κ of
Ceramic Thermal Barrier Coatings

for Turbine Blades
with James Ruud, NS Hari, James Grande, and Antonio Mogro-Campero,

GE Corporate R&D
Funded in part by DOE Advanced Turbine Systems Program

TBC’s allow jet engine blades to operate
at higher temperatures.

Physical measurements of κ are difficult,
time consuming and expensive. Hardly
ever done during quality control.

 OOF could replace measurements
during research, development, design,
and production.

13

1.48 0.96

0.62 0.63

0.76 0.81

Thermal Conductivity Measurements

κ (W/m-K) at
890°C in N2

Porosity is not a good predictor of
thermal conductivity.

14

Consistent correlation for a wide range of
microstructures.

OOF is a good predictor of thermal conductivity.

Comparison of Two Specimen Sets

Measured κ
vs. Porosity

OOF κ vs.
Measured κ

15

The MatCASE Project
• Materials Computation and Simulation Environment

• Funded by NSF-ITR.

• Includes Materials Scientists, Physicists,
Mathematicians and Computer Scientists.
• Participants are from Penn State, Ford, and NIST.

• Zi-Kui Liu, Long-Qing Chen, Padma Raghavan, Jorge Sofo,
Chris Wolverton, Qiang Du, SAL.

• Goal: To develop integrated computational tools
for multiscale materials design.

• OOF2 will be one part of a parallel, grid-enabled,
computing environment.

16

Integration of Four Computational Methodologies
First Principles
Calculations

CALPHAD
Phase diagrams

Phase Field
Calculations

OOF:
Finite Element

Analysis

Interfacial energies, lattice
parameters and elastic constants

Kinetic data for 1, 2 &3
component systems

Bulk thermodynamic data
for 1, 2 & 3 components

Experimental data

Bulk thermodynamic database
for multicomponent systems

Database of interfacial energies, etc. Kinetic database for
multicomponent systems

Plasticity of phases Microstructure in 2D and 3D Elasticity of phases

Mechanical response of simulated
microstructures

17

Why OOF2?
OOF2 reflects lessons learned from OOF1.

More expandable.
More flexible.

Emphases:
Extensibility and maintainability through proper

object-oriented design reflecting the
underlying mathematics.

Generality by making few assumptions about the
problems being solved.

Usability with a clear user interface.
Sanity with a flexible infrastructure.

18

Easily extendible to a wide variety of problems
elasticity, plasticity, thermal conductivity, mass diffusion,
electrical polarization, piezoelectricity, ferroelectricity,
Darcy’s Law fluid flow, …

Designed for simple addition of new fields, fluxes,
and equations.

OOF2

Elasticity Thermal Cond. ?

Field Φ displacement temperature ?

Flux σ force heat flow ?

Modulus k Cijkl κij ?

Force f force heat source, sink ?

σ =
∑

i ki∇φi −∇ · σ = f schematic

19

Why OOF2?
For example (proper design):

Physics and Finite Element class structure more closely tied
to the underlying mathematics.
Allows more physics and more types of finite elements.

Element Material

Master

Element

Triangle Quad

3-node 6-node

List of Properties

Property

Elasticity

Isotropic

Cubic

Thermal

Conductivity

OOF2
Element

Triangle

Isotropic
Cubic

Quad

etc.

OOF1

Properties can be coded completely
independently from the element classes.

20

OOF2 Code Ingredients

C++ (core) and Python (interface).

C++/Python glue code generated by SWIG.

Libraries:
GTK+ graphics.
PETSc, MPI parallel solvers.
ImageMagick image manipulation.
IML++, MV++, SparseLib++ linear algebra.

21

image

materials
assembled from lists of properties

microstructure
materials assigned to groups of pixels

skeleton
only the geometry of the finite element mesh

mesh
skeleton + mathematics + physics

solution

OOF2 Conceptual Ingredients

Cijkl

Microstructure

22

Interface leads users through the tasks

Skeleton Boundaries
FE Mesh
Fields
Equations
Boundary
Conditions
Solver
Analysis
Boundary Analysis

23

Graphics Window

24

Extensibility via Class Hierarchy

RegisteredClass

SkeletonModifier

Refine Anneal

PixelSelectionMethod

Color Burn Circle

Registered classes represent:
Operations on images, meshes, etc.
Material properties.
Parameters for the above.

Registrations describe how to create objects in the classes
Menus and GUI components are created automatically
from Registrations.

25

Registration(’Burn’, Burn, PixelSelectionMethod,
 params=[
 FloatRangeParameter(’local_flammability’,
 range=(0,1,0.01), value=0.1,
 tip=”don’t take any wooden nickel
 FloatRangeParameter(’global_flammability’...),
 EnumParameter(’color_space_norm’, ColorNorm...),
 BooleanParameter(’next_nearest’, ...)],
 tip=”Select a contiguous set of pixels...”
)

RegisteredClassFactory

26

More Infrastructure

Underlying menu driven structure (in Python):
Specify name, callback function, menu,
 argument parameters.

Menu items created explicitly, or implicitly from
Registrations.

Communication between different code
components is by means of a “switchboard”

Objects send messages to switchboard.
Other objects subscribe to messages.
Sending object doesn’t have to know who (if anybody) is
listening.
Allows modular development and use.

27

Routines that
actually do stuff

Menu
system

Graphical
User Interface

Command
Line

Interface

Scripts

?X

OOF2 Control Structure

Switchboard

Binary
Interface

Data
Files

28

GUI, Threading & Parallel Processing

OOF is meant to be an interactive system in which
users can experiment with different scenarios in
real time.

Need a responsive multithreaded interface.
Parallel back-end for quick turnaround.

Still, lengthy computations need to be performed in
batch mode, without a GUI.

“Worker” classes added to menu system to handle
different modes of operation.

TextWorker, GUIWorker, ThreadedWorker, etc.

29

Routines that
actually do stuff

Menu
system

Graphical
User Interface

Command
Line

Interface

Scripts

OOF2 Control Structure

Switchboard

Front End Thread

Back End Thread

Worker

30

Routines that
actually do stuff

Menu
systemCommand

Line
Interface

Binary
Interface

Threaded
Worker

Socket

Graphical
User Interface

Scripts

OOF2 Control Structure

Main
Processor

Remote
Processors

Parallel
Worker

Back End

Menu
systemCommand

Line
Interface

Binary
Interface

Routines that
actually do stuff

Routines that
actually do stuff

Menu
systemCommand

Line
Interface

Binary
Interface

Threaded
Worker

S
o
cket

MPI

31

What’s Next?

OOF2.x will add

non linear solvers

plasticity models

time dependent & eigenvalue problems

OOF3D

32

OOF1 is available now at
http://www.ctcms.nist.gov/oof/

source code for Unix computers
precompiled binaries (Linux, SGI, Mac OSX)
manuals & tutorials
mailing list

OOF2 will be available real soon now
(within a few months, we hope).

